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1 Abstract

This paper is intended to draw attention to a unique aspect of the Hopkinson 
bar, which while not new, has not been exploited by the blast wave 
measurement community. The nearly 50-year-old work referenced herein 
established a solid theoretical basis for realizing a highly resolved temporal 
measurement of blast wave pressure profiles. The referenced work also 
compares the calculated bar response with shock tube experiments 
producing a step-function loading profile on a bar, mounted internal to and 
co-axial with the shock tube.  Within the fidelity of the instrumentation and 
recording equipment, the experiments verified both the qualitative and 
quantitative analytical analysis of bar response. This paper respectfully
revisits prior work on this centenary occasion as a fulfillment of the original 
intent of Hopkinson to measure blast waves and impactor effects.  

2 Introduction

For the last 100 years and up to the present day, the Hopkinson bar 
technique1 has been an important laboratory tool to study the response of 
materials to dynamic loads. In practice, the Hopkinson bar technique has 
been applied primarily in the moderate strain rate regime, rather than for the 
measurement of blast and impactor effects as envisioned by Hopkinson.
Three fundamental papers provide the theoretical foundation for the 
response of a bar to dynamic loading and thus are key to understanding the 
limitations and therefore applications of a Hopkinson bar.

The first two are the early theoretical work of Pochhammer2 and Chree3 that
proved that sinusoidal waves traveling in an infinite bar with a condition of 
zero stress at the lateral surface leads to an equation connecting phase 
velocity and frequency of the waves. This conclusion is important because 
this phase velocity and frequency relationship requires that a pulse, which 
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can be described in the frequency domain as a composition of Pochhammer-
Chree (PC) waves of many frequencies, would be expected to change shape 
during travel. This inherent dispersive nature of wave propagation in a bar 
presents a fundamental limitation on the frequency response of a bar and 
thus limits its utility to moderate frequencies pulses and strain rates. A third 
paper by Folk, Fox, Shook, and Curtis4 examined the common end-loading 
usage of a bar and provided an exact solution to the problem of calculating 
the strain due to time-dependent end-loading of a semi-infinite bar. This 
work concerned calculating the amplitude of the resulting oscillations in the 
bar, the relative importance of the various possible modes of vibration, and 
the dependence of pulse shape on the conditions of loading. A method was 
presented for calculating the elastic strain produced by the sudden 
application of pressure to the end of a semi-infinite cylindrical bar with a 
stress-free lateral surface. The exact solution is expressed as a sum of Fourier 
integrals whose integrands have the form of Pochhammer–Chree waves, 
which can be evaluated to obtain asymptotic solutions valid at large distances 
from the end of the bar. These solutions take the form of an Airy5 function, 
shown in Fig. 1, which is a wave form consisting of a low frequency rise 
followed by a series of higher frequency waves of diminishing amplitude and 
increasing frequency. These findings explain the limitation of the Hopkinson 
bar to response regimes of moderate strain rates.

Fig. 1.  Strain observed on surface of a cylindrical bar subject to step-function end-loading
[ref. 4].

The “current” 50-year-old referenced work by Baum5 builds on these prior 
papers and uses the same theoretical approach for calculating the time-
dependent response of a bar subject to a traveling lateral surface load. 
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Within the same asymptotic solution conditions, there is found an additional 
non-dispersive term in addition to the Pochhammer-Chree waves. This 
additional finding enables a high-fidelity time-resolved response of a bar to a 
time-varying load.  

This paper reviews the approach to the analysis described in Ref. 5 and the 
significant results, but refers back to Ref. 5 for detailed descriptions of the 
analysis. Copies of the original data records from the Baum thesis6, which 
verify the analysis, are contained herein and suggest the potential utilization 
of the Hopkinson bar for high resolution blast wave and shock tube pressure 
measurements. The included figures are referenced to their original sources.

3 Description of Analytic Problem

3.1 Lateral Surface Loading

The problem to be solved is the determination of the elastic strain in a 
cylindrical bar of radius a, subject to a step function in stress, τrr, traveling at 
velocity V, applied normal to the lateral surface, and subject to zero stress, 
τzz, and radial displacement, μr, on the end of the bar. These boundary 
conditions are illustrated in Fig. 2. 

Fig. 2.  Boundary conditions for constant velocity normal stress loading on the lateral 
surface of a bar [ref. 5].

This is a mixed-end condition problem (one component of stress and one 
component of displacement, specified on the end of the bar). The end 
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conditions chosen allow the use of the double transform method of solution 
presented by Folk et al. The assumption regarding the value of the end 
displacement is relatively unimportant for strains at large distances from the 
end of the bar and serves to enable the solution technique.

The equations of motion for a bar having cylindrical symmetry and the 
coordinates as shown in Fig. 2 are:  
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In these equations t is time, ur and uz are radial and axial displacements 

respectively,  is the density and  and  are the Lamé elastic constants. 

and  are defined by equations (3) and (4).

Solutions to these equations must satisfy the following initial and boundary 
conditions:

(a) the initial conditions at t = 0,
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(c) the boundary conditions at the end of the bar,
z = 0,

���(�, �, �) = 0

��(�, �, �) = 0
(7)

P represents the amplitude of the applied normal stress, V is the loading 

velocity, and � �� −
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�
� is a step function in time moving at speed V. In

addition, the stress components ��� , ��� , and ��� are related to the 
displacements by the stress-strain equations.
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Equations (1) through (10) completely specify the problem.

Asymptotic solutions to the equations of motion valid at a long distance from 
the loaded end of the bar were obtained. These solutions predict time-
dependent strain, which may be described as the superposition of several 
waves each of which propagates with a characteristic velocity. The strain 
produced by a positive normal loading of the lateral surface consists of a 
radial expansion followed by a radial compression. The initial radial 
expansion has the form of an Airy function and propagates at the bar velocity 

Co= /ρ. This wave is dispersive and its amplitude is a function of V, the 
elastic constants for the bar material, and the normal stress P. It is analogous 
to the pulse emanating from end-loading of the bar. The subsequent radial 
compression pulse is non-dispersive and can have several components 
traveling at the surface loading velocity and is best understood from the 

Pochhammer-Chree solutions in the ,  plane, where =ω/Cs and =a, 
where the shear wave velocity Cs = (μ/ρ)½, as shown in Fig. 3. 
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Fig. 3.  Pochhammer-Chree dispersion curves for a bar having a Poisson’s ratio of σ = 0.35 
[ref. 4].

The curves in Fig. 3 having mode q>0 represent allowable propagation 
frequencies and wave speeds according to PC, expressed in terms of elastic 
bar properties. The slope of the curves at any given point describes the 
propagation velocity of waves at the corresponding frequency. Thus, it can be 
readily seen that there are discrete relationships between wave propagation 
speed and wave frequency. With end-loading of the bar, the PC curves for 
q>0 prescribe the only allowable propagation speeds of elastic waves of a 
given frequency. The result of this dispersive frequency propagation speed 
relationship prescribes the pulse shape in Fig. 1, where low frequency waves 
at the head of the pulse are traveling faster than the high frequency waves,
which arrive later in time.  

Of particular significance in this paper is the additional zeroth mode, q=0, 
resulting from the lateral surface loading and is a straight line indicating that 
particular mode allows propagation of all frequencies at the same speed, 
which corresponds to the surface loading speed V, i.e., it is a non-dispersive 
mode. Note that its slope (propagation speed) is directly proportional to the 



7

loading velocity, whereas all the higher PC modes are dependent only on bar 
parameters. For a given bar material and size, along with an assumed loading 
speed and pressure amplitude, the compressive bar response to step-
function compressive loading has been calculated.5 An understanding of 
Fig. 2 provides a description of the response of a bar to both end-loading and 
lateral surface loading.

For all modes higher than the first (q>1), the phase velocity in the high 
frequency limit is the shear velocity Cs. The high frequency limit phase 
velocity of the first mode (q=1) is the Rayleigh surface wave velocity. The 
minimum phase velocity of the first mode Cmin, is only slightly less than the 
Rayleigh velocity. 

For loading velocities less than Cmin, (roughly three-fourths of the elastic shear 
wave velocity Cs) the zeroth mode line does not intersect any PC mode curves 
and so wave propagation speed is constant at the loading speed V, for all 
wave frequencies. This zeroth mode result allows, in theory, a bar to respond 
to a lateral loading pulse with exquisitely faithful reproduction of the loading 
pulse. Of course limitations will arise from the finite dimensions of sensors 
employed to detect bar response, which will be discussed later.  

For all loading velocities greater than or equal to Cmin, there is at least one 
intersection of the zeroth mode and one or more of the PC modes. The 
intersection of the zeroth mode and a higher order mode will result in the 
zeroth mode non-dispersive response, followed by the singular frequency 
wave corresponding to the higher order PC mode intersect point.  

3.2 Shear Stress Loading

An additional loading condition on the lateral surface of the bar is associated 
with a gas dynamic shock wave loading. The boundary layer flow behind a 
shock wave propagating along the lateral surface of a cylindrical bar exerts a 
shear stress on the surface of the bar. In order to establish the qualitative 
nature of the resulting strain, the equations of motion, Eqs. 1-4, were again 
solved using the method of Folk et al.  The same initial conditions and end 
conditions were used, but the boundary conditions on the lateral surface 
were assumed to be zero radial stress and a step-function shear stress 
traveling at the loading speed V.  In reality, the shear stress should decrease 
with distance behind the shock, but as our intent here is only to understand 
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the character of shear stress loading on bar response, the shear stress was 
assumed constant behind the shock.

The results of the double transform inversion technique predict that at time 
t = z/Co, a positive shear stress produces a strain, which rises linearly with 
time. With the arrival of the loading shock at t = z/V a linearly decreasing 
strain is added to the first so that the total shear strain decrease linearly with 
time.  

3.3 Mathematical Summary

Figure 4 illustrates bar response to lateral surface loads of two different 
speeds. Note that for all loading speeds there is an initial Airy function 
expansion pulse traveling down the bar at the bar velocity Co, followed by a 
compression load associated with and traveling at the loading speed V. The 
final strain in the bar is the sum of these two pulses and reduces to the static 
solution for radial compressive strain = (P/E)(1-σ) and is independent of 
loading speed.  

Fig. 4.  Circumferential strain time profiles for a bar.  (a) Normal stress loading, V<Cmin; (b) 
normal stress loading, Cmin<V<Co; (c) shear stress loading, V< Cmin [ref. 5].
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For V< Cmin, total circumferential strain consists of an Airy function strain 
signal propagating in the bar with the bar velocity Co followed by a negative 
step strain propagating with the loading velocity V, as shown in Fig. 4(a).  

For Co>V>Cmin, circumferential strain consists of the Airy function strain signal 
and the negative step strain of the previous case. The sinusoidal oscillations 
predicted by the intersection of the zeroth and first mode of the PC curves 
begin immediately following the negative step strain and continue until 
arrival of similar oscillations traveling with the group velocity. These two 
oscillations have the same frequency but are out of phase so they cancel 
exactly as shown in Fig. 4(b), and the strain in the bar is at its equilibrium 
value under the load P. The circumferential strain induced in a cylindrical bar 
by a transient shear step stress traveling with the shock speed consists of a 
linearly increasing ramp, which arrives at a time t = z/Co, followed by a 
linearly decreasing ramp, which begins at a time t = z/V, as shown in Fig. 4(c).  

An additional phenomenon not considered here is the thermal loading of the 
bar, which can further complicate bar and gage response intended solely to 
measure pressure induced circumferential strain.  

4 Experimental Configuration

The experiment designed to verify the preceding predictions for time-
dependent strain in a bar required: A normal step-function stress loading of 
constant magnitude and loading velocity, strain measurements on a time 
scale allowing convenient comparison with the predictions, and use of a bar 
of sufficient length to allow completion of strain measurements before the 
arrival of strain waves reflected from the downstream end of the bar.

A conventional constant diameter bursting diaphragm shock tube, which had 
a 3.8cm diameter by 1.5m long driver section and a 7.0m driven section, was 
used to produce a well characterized step-function loading pulse of shocked 
air. The driver section was pressurized with helium (2,000-lb/in.2 maximum), 
and produced shock waves of desired speed and magnitude in the driven 
section. The shock velocity V was determined by recording the shock transit 
time between a pair of glow-discharge gages, placed 86 cm apart. Shock 
velocities were believed accurate to ±2%. Shock pressure was computed from 
normal shock tables using the measured values of V, the initial pressure and 
temperature of the air in the driven section. The resulting shock pressure 
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jump –P loading the bar were believed accurate to ±3%. The loading pressure 
ranged from 0.2 bar for fast shocks to 2.5 bar for slow shocks.  

The driven section of the shock tube was modified to accommodate a long 
instrumented bar, co-axial with the shock tube, allowing the shocked air to 
establish an annular flow that progressively enveloped the lateral surface of 
the bar. The Plexiglas measuring bar was 0.95cm in diameter and 2.9m long.  
Plexiglas was chosen because its relatively low Young’s modulus produces a 
larger strain than common metals such as Al or steel. A complication 
associated with the use of Plexiglas is its visco-elastic behavior, which was 
observed in the experiments. To aid in the development of a smooth region 
of annular flow along the bar, a lead-in bar of the same diameter and 350cm 
long was mounted upstream of the instrumented bar. A second but 
important role of the lead-in bar was to eliminate a reflected shock end-
loading of the instrumented bar. To accomplish these goals, a small gap was 
adjusted between bars allowing the shocked gas to rapidly fill and equilibrate 
to the shocked gas pressure. A gap of <2mm was found to accomplish both 
purposes. The Plexiglas bar has a low bar velocity, C0=2.08 km/sec, compared 
with metals, and its length allows an observation time of more than 2 msec 
before arrival of elastic waves reflected from the end of the bar. The low Co

also allows the bar to be studied over a broad range of loading velocities 
relative to the PC response modes portrayed and discussed in Fig. 3. Fine 
copper wires spaced at 90 cm intervals supported the bars and were 
adjustable to center the bars coaxial with the shock tube. No support was 
within 30 cm of either strain gage and no effect of the supports was observed 
on the experimental records.  

A schematic of the shock tube, bar assembly, and instrumentation is shown in 
Fig. 5.
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Fig. 5.  Block diagram of the experiment setup [ref. 6].

V1 and V2 were glow discharge gages used to measure the average shock 
speed along the instrumented section of the bar. S1 and S2 are strain gages 
embedded beneath the surface of the bar to measure circumferential strain 
of the bar while being isolated from direct contact with the shocked gas. The 
gages were 30 cm apart. Gages S1 and S2 each consisted of four thin-film 
metal strain gages connected in series and placed symmetrically on the 
measuring bar. This arrangement provided negligible sensitivity to flexural 
waves while providing maximum sensitivity to circumferential strain. A 
constant 10.0 mA current powered the gages and a gage voltage change of 
0.3 mV resulted from a typical shock-produced strain of 10-5. Shock transit 
times across the 0.185cm width of the strain gages ranged between 1 and 
3 μsec in these experiments. The signals were recorded on Tektronix type 555 
and 585 oscilloscopes equipped with type D amplifiers.  

Figures 6 and 7 are data records of circumferential strain vs time 
representative of different regimes of shock velocities studied. Strain is 
positive upward and time progresses from left to right.
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Fig. 6.  S1 and S2 strain gage records for shock velocity V=0.877x105 cm/sec [ref. 6].

Figure 6 shows a representative data record of S1 and S2 strain gage voltages 
versus time. Increases in strain are positive on the vertical axis and time 
increases from left to right. The shock velocity (V=0.877x105cm/sec) is less 
than the minimum phase velocity of the first PC mode (Cmin=1.184x105 

cm/sec). The first signal on the left travels with the bar velocity Co and is 
produced both by the loading of the lateral surface and by the filling of the 
gap between the lead-in and measuring bars. The slowly rising ramp signal 
has the qualitative features predicted for shear loading on the lateral surface 
(a thermally produced surface stress could show similar behavior). The 
negative step on the records coincides with the loading shock arrival and 
represents the rapid compression of the bar resulting from the shock passing 
directly over the strain gages. The lower record of S1 is the same S1 gage 
response at a faster recording speed and shows a smooth negative response 
of the bar, corresponding with the 4 μsec transit time of the shock over the 
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S1 gage width. Note the clean response of the bar to the shock loading and 
the absence of any associated overshoot and ringing. This response 
corresponds with the calculated response for the velocity conditions shown 
in Fig. 4(a). Figure 7 shows a similar record for strain gage output for a shock 
velocity (V=1.79x105 cm/sec) greater than Cmin. Oscillations follow the arrival 
of the shock as predicted by the theory, but they are damped because of the 
visco-elastic behavior of the Plexiglas.  

Fig. 7. S1 strain gage record for shock velocity V=1.79x105 cm/sec [ref. 6].

5 Comparison of Experiment and Theory

Comparisons of experiment and theory were based on measurements taken 
from oscilloscope traces similar to those shown in Figs. 6 and 7, the 
measured shock velocity V, and the measured initial temperature and 
pressure of the gas. The pressure jump –P across the shock was calculated 
from normal shock tables8 and the applied lateral surface stress τzz(z, a, t) was 
taken to be PS(t-z/V).  
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The experimental strain-time data were plotted along with the calculated 
strain histories. Only the strain wave traveling with the shock velocity is 
considered in this quantitative time-dependent strain comparison. Figures 8 
and 9 show both calculated and experimental strain responses of the  
measuring bar to passage of the traveling air shock. The zero for the time 
coordinate used in the comparison occurs when the shock passes over the 
center of the strain gage. As data records did not contain an absolute 
indicator showing the arrival for the shock at the center of the gage, the 
experimental and calculated curves were aligned in time to obtain a best fit.  
The calculated strain data were averaged over a time interval τ corresponding 
to the transit time of the shock front across the width of the strain gage. This 
transit time in microseconds is indicated by a horizontal frag in each of Figs. 8 
and 9. The possible data error in reducing the gage record to numerical data 
is shown by a vertical flag in each figure.  

The values of the elastic bar parameters used in the calculations are

Cs=1.27x105 cm/sec shear velocity,
Co=2.08x105 cm/sec bar velocity,
Cd=2.64x105 cm/sec dilatational velocity,
σ= 0.35 Poisson’s ratio,
E=5.22x1010 dyn/cm2 Young’s modulus

The values were taken from Meitzler9, whose measured values for the  
dilatational wave velocity in Plexiglas agreed within an experimental error of 
±2% with ultrasonic measurements.  
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Fig. 8. Comparison of theory and experiment for strains produced by shock loading, 
V=0.887x105 cm/sec, P=-1.498x106 dyn/cm2  [ref. 6].

Figure 8 shows the simple behavior of the bar typical of speeds V<¾Cs. The 
numerical data were taken from the S1 record in Fig. 6, converting the 
vertical scale from units of voltage to units of strain. The pressure jump 
across the shock front was 1.50x106 dyn/cm2. A point-by-point comparison of 
experiment and theory in Fig. 8 shows the deviation of the two curves is less 
than the width of the oscilloscope trace. A correction for the high-frequency 
electrical response of the gage circuitry was not required.   

Fig. 9. Comparison of theory and experiment for strains produced by shock loading, 
V=1.79x105 cm/sec, P=-0.597x106 dyn/cm2 [ref. 6].
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Figure 9 compares experiment and theory in the higher velocity regime 
where oscillations follow shock arrival. While the agreement is good, there is 
a slight discrepancy between calculated and measured frequencies. It is 
noted that the PC oscillation frequency is determined by the intersection of 
the q=0 and q=1 mode in Fig. 3 and the slope of the curves is such that a 
small change in characteristic material velocities or shock velocity will result 
in a larger change in the intercept point and thus predicted oscillation 
frequency. An example of the sensitivity is seen in Fig. 10, which is a 
comparison of the same data in Fig. 9, but with the elastic parameters 
adjusted by 2%.  

Fig. 10.  Comparison of theory and experiment for strains produced by shock loading, 
V=1.79x105 cm/sec, P=-0.597x106 dyn/cm2, adjusted parameters  [ref. 6].

The improved agreement seen in Fig. 10 resulted from an increase in Cs, Co, 
Cd of 2%. Note that values of these parameters were taken from Ref. 9 and 
were not independently measured for our bar material. With this small 
adjustment in parameters, the agreement with experiment is within the 
measurement error bars.  

6 Summary

Prior work has been reviewed and referenced, which collectively provides a 
rigorous theoretical and experimental basis for realizing a non-dispersive 
response mode in a Hopkinson bar configuration. The configuration requires 
a lateral surface exposure to a shock loading pulse, which is consistent with 
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the pencil probe geometry and orientation for measurement of blast waves.  
To realize the non-dispersive behavior, the blast wave speed must be less 
than ¾ of the shear wave velocity of the bar material. In this lateral loading 
mode, the frequency response of the bar is not limited and thus the time 
resolution obtainable from the bar is determined by the strain sensor 
response and the transit time of the shock over the strain sensor in the bar. 
Additional considerations on bar design in addition to elastic parameters 
include material properties and surface finish to minimize effects of boundary 
layer drag and thermal conduction from shocked gas to the bar.  

This collective of work demonstrates a capability through both theory and 
validating experiments for the direct utilization of a Hopkinson bar to 
faithfully reproduce a shock wave loading profile without the overshoot or 
ringing associated with the response of pressure transducers.  
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